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Abstract

An analysis based on geometrical optics for a dual-reflector antenna system with
two arbitrarily shaped reflectors is carried out. Formulas for the phase and ampli-
tude distribution in the aperture of the second reflector are obtained when the
source function and the reflector surfaces are given. A design technique based on
the derived formulas is also discussed.
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Arbitrarily Shaped Dual-Reflector Antennas

i. Introduction

The design of dual-reflector antennas based on the tech-
nique described by Galindo (Ref. 1) has been rather suc-
cessful. The surfaces of these reflectors are surfaces of
revolution about an axis on which the feed horn is located.
Galindo derived a pair of first-order nonlinear differential
equations according to the laws of geometrical optics.
Upon solving this set of equations one obtains the shapes
of the dual reflectors for a given phase and amplitude dis-
tribution in the aperture of the second reflector. Although
Galindo’s technique may be extended, in principle, to treat
the case in which the feed horn may be located away from
the axis of the reflectors, the resultant equations are a set
of nonlinear partial differential equations which are very
difficult (if not impossible) to solve.

In an attempt to circumvent this difficulty it is proposed
that one consider the following problem: Assuming that
the shapes of the two reflector surfaces are given, find the
aperture field distribution in the aperture of the second
reflector. To obtain the desired aperture field distribution
a trial-and-error method is used to find the appropriate
shapes of the dual reflectors. For the initial trial the shapes
of the reflectors are assumed to be those obtained accord-
ing to Galindo’s method for a symmetrical, on-axis feed,
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dual-reflector system. The purpose of the present work is
to analyze this problem.

Il. Analysis

A point source is assumed to be located at a point
A (%o, Yo, %0). A ray originating from the point source at A
is assumed to be reflected at the point B (x;,4:,2,) on a
doubly curved reflecting surface called surface I. The
reflected ray from surface 1 is again reflected at the point
C (%2, Y2, Z2) on another doubly curved reflecting surface
called surface 2. This reflected ray from surface 2 finally
arrives at the field point D (xs, s, 25). The geometry of this
problem is given in Fig. 1. Itis assumed that surface 1 may
be described by the equation z = f, (x, y), and surface 2 by
z = fy(x,9).

The techniques of geometrical optics will be used to
treat the present problem. The geometrical optics analysis
assumes that at each point on the reflector the incident ray
is reflected by the tangent plane according to the laws of
reflection. The intensity of the reflected wave in a given
direction is obtained by applying the principle of the con-
servation of energy to the total power contained in an
incident cone of rays and the total power contained in the




associated reflected pencil of rays. The use of the laws of
reflection assumes that (1) the reflector 1 or 2 can be
regarded locally as a plane surface, and (2) the incident
wavefront can be regarded locally as a plane wave. In
other words, the radii of curvature of reflector 1 or 2 and
of the incident wavefront must be large compared with
the wavelength., Condition (2) may be assured by the fact
that the reflectors are in the far-zone field of the source.

The phase distribution across the aperture of reflecting
surface 2 will depend on the path length and phase change
upon reflection. The phase length is easily calculated if
the point of reflection on the surface is known and if the
point of reflection is uniquely defined by the Snell law,
which states that the angle of incidence is equal to the
angle of reflection. For example (refer to Fig. 1), the total
path length of a ray travelling from point A to D is
(L, + L, + L), with

Ly = [(x: = 20)? + (Y1 — 40)* + (22 — 20)°]%
Ly = [0 = x:)? + (2 — 11)* + (22 — 2,)%]%
Ly = [(xs = %)* + (ys — y2)* + (25 — 22)]%

A procedure for finding the locations of (x,,y1,21), (X2,Y2,2:),
and (x4,¥s,%,) is given in Appendix A.

Upon considering the dispersive effect of the curved
reflecting surfaces and the transformation of the polariza-
tion on reflection, one obtains the following expression for
the electric field at point D%:

Ep, = [(mc “Em‘) Ng — (nc X Eci) X ng]

RS RS %

-ikl,2 1
et T @
with
Eoi = {(HB °EBi) g — (nB X EBi) X nB]
R} R} I
ik, 9
l(RB+L YRE+L)| © @)
. EAi 6'“”‘1
Egi = kL (3)
2

z = f] (x,y}
(REFLECTOR 1)

: ("1' Yy 21)

z = f,{x,y)
(REFLECTOR 2)

A 1S SOURCE POINT
D IS FIELD POINT

Fig. 1. The geometry of the problem

where

E,; = electric field at point A

Ep; = incident electric field at point B

E,; = incident electric field at point C
Ep = electric field at point D
ng = unit normal vector at point B
ng; = unit normal vector at point C

k = free-space wave number

RE, R? = principal radii of curvature of the reflected
wavefront at point B

RS, RS = principal radii of curvature of the reflected

wavefront at point C

The principal radii of curvature of the reflected wavefront
can be found by considering the principle of conservation
of energy in an incident cone of rays. Detailed derivation
is given in Appendix B. The R® and R? can be obtained
from the following equation

(F2)]
-1 [EB NB - GB LB —

(R® 2 [E*GP —
— (R} ),) 2 F® M*]
+ [LPN® — (M®)*] =0, (4)
where
EB =1, FB =0, GB = cos? B
L® = 248 cos {8 — —1—
L,
M® = —2¢Bcosi®

1
= 2b®cos B — — cos? {B
L,
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s_ _ | _cos? H cos? 6% denote, respectively, the angles between the incident ray
@ = [Rg‘ sin?i® R sin® iB:| and the principal axes of the reflector £® and »®. The sym-
bols RE and R% denote the principal radii of curvature of

BB = — [ cos® §7 cos® 0, } the reflector surface at point B. According to the theory
Rsin®é® = Rjsin®¢® of differential geometry (Ref. 4), if the equation of a sur-

cos 6% cos 6 / 1 1 face is given by
B — .. = e 2
¢ sin? {® (R? RE > z=f(x%y) ()

The symbol i& denotes the angle between the incident ray  the principal radii of curvature of the surface at point B
and the unit normal ng at point B. The symbols 6% and 6% can be found from the equation

[rB 8 — (SB)Z](B?’,,)‘* — [(1+ (g®)2) r® — 2pB qBs® + (1 — (pB)2) 8] (1 + (pB)* + (¢®)))*% ngn
A+ @+ (PP =0 (6

where

701328_f1 B_gﬁ TB:azfl SB-—azfl tB:%
a bl - >

x at B q ay at B ’ ax2 at B B axay at B ’ ayz at B

The principal radii of curvature of the reflected wavefront at point C, RS , can be obtained in a similar fashion as that
shown for R% , by replacing the B by C, the f, by f., and the L, by L..

fil. Conclusions

Since to achieve maximum gain requires uniform phase and amplitude distribution across the aperture, it is desir-
able to design the reflector surfaces so that the requirement on phase and amplitude may be met. The formula given

(ie., Eq. 1) will enable us to calculate the aperture field distribution when the source function and the reflector surfaces
are given.
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Appendix A

Phase Length Computation

It is assumed that the phase center of the feed horn is (2) From the Snell law, one obtains the unit vector for
located at (%o, Yo, 2o) and that the direction cosine of a ray the reflected ray (ray 2),
starting from this point is (fo, Mo, no). Furthermore, the
equations for the two reflecting surfaces are given by T.= —L+21° N,)N, (A-8)
z = f,(x,y) and z = f, (x,y). The geometry of this prob-
lem is shown in Fig. L. The following procedures will be where the direction cosines of the unit vectors I,
followed to compute the phase length of each ray: and N, are, respectively,
(1) Ray 1, originating from (xo, Yo, %,) with direction L = (Lo, Mo, no) (A-9)
cosines (o, 7, 1), satisfies the equation
N: = (Iy1, My, ny1) (A-10)
x'—xo_—y"—yo_z'—zO _ i
I, m, n (A-1) with
_ — 0f,/0x

This ray intercepts the first reflecting surface z = Iy, =

f1(x,y) at (x1,y1,%1). The point (x,y1,2,) is found Ay

by solving the following set of equations: o3y
A,

if my 40, then (A-11)
1

A,

My =

Ny —

%(% = Yo) + %o = " -
f1 <—QO— (y; — yo) + %o, y1> (A-2) & [1 * <_§;> * <5y—> ]

So, the direction cosines for ray 2 are

I

T - 1 Yo 0 A-3

X me (y Y ) + x ( ) "['1 = (Ql, m,, nl) (A_]_z)
2z = f1 (%1, ) (A-4) with

if 0,40, then b= 1o (25, — 1)

my = m, (2m§, — 1)
o
—{x; — %) + 2o =

2, n, = n, (2nf;, — 1)
(e - tn) 49
1 x e - -
b, T T T Hence, the equation for ray 2 is
= )+ A-6 X—% Y~ Y1 2%
v =7 (0= %) T 4o (A-6) = = (A-13)
0 4y m, 7y
2= fi (%, 1) (A-T) (3) Now, ray 2 intercepts the second reflecting surface
_ 2 =1 (x,y) at (%, Ys,2:). The point (x., Y, z,) can
The length of ray 1 is then be found in a manner similar to that described
in (1). Only the subscripts 0 and 1 in Egs. (A-2)
Ly = [(xt: — %0)* + (g1 — yo)® + (21 — 20)°]% through (A-7) need be replaced, respectively, by the
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subscripts 1 and 2. The length of ray 2 is then -1

L, = [(X2 - 9&)2 + (yz - y1)2 + (Zg — 21)2]%. From Mz = A,
the Snell law and following the procedure given in
(2), we can obtain the unit vector for the reflected f\2 [ofa\2 %
ray (ray 3): A= [1 + ('é;) + 5;) ]
Tz = (b, mq, o) (A-14) Hence, the equation for ray 3 is
where
I =10, (203, — 1) x;"z:y;?h: z;% (A-15)
2 2 2

m, = m,; (2mk, — 1)
i ' " (4) Ray 3 intercepts the surface z = f; (x, y) at (%3, s, %5)-

n, = n, (2ng, — 1) The point (x;, ys, z;) can be found in the same way
as described in (1). Only the subscripts 0 and 1 in
b, = of2/0x Eqs. (A-2) through (A-7) need be replaced, respec-
A, tively, by the subscripts 2 and 3. The length of ray 3
‘ is then
_ 0f:/%y
A, Ly = [(xs — 22)* + (Y5 — yo)* + (2 — 22)°]%
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Appendix B

Derivation of the Amplitude Reflection Coefficient

The magnitude of the reflected wave will be derived
according to the laws of geometrical optics and the prin-
ciple of the conservation of energy (Ref. 2). Consider a
tube of rays that cuts out elements dA, and dA, on the
two wave surfaces S; and S, in free space. The principle
of conservation of energy requires that

P,dA, = P,dA, (B-1)
where P, = v/¢e/u| E,|? is the power flow per unit area at
the wave surface S, and P, = \/€/u|E,|? is the power
flow per unit area at the wave surface S,. The symbols
(e,11) are the constitutive parameters of free space. The
absolute values | E,| and |E,| are, respectively, the mag-
nitudes of the fields at S, and S.. Let R, and R, be the two
principal radii of curvatures at a point in dA, on the wave
surface S,, and let p be the length of rays between the
wavefront surfaces S; and S,; then one can easily show
by consideration of simple geometrical relations that the
relation between the cross sections of the tube of rays is

dA, = ] (p * F;)ﬁf TR | g, (B-2)
Hence, we have
\ / RrRz Y
E=m | errieam]) B9

Referring now to the problem of reflection for a con-
ducting surface and according to the laws of reflection
and the conservation of energy, one has

|E:| = [ E] (B-4)
where |E;| is the magnitude of the incident wave and
|E,| is the magnitude of the reflected wave. So the mag-

nitude of the field amplitude |E,| at a distance p along
the reflected ray is

| RiR. %
Ylp+R)(pt R

|Ep| = |E

i

(B-5)

Here R, and R, refer to the radii of curvature of the
reflected wavefront. For computational purposes it is
much better to express R, and R, in terms of the radii of
curvature of the reflecting surface R¢ and Ry. The values
for Rg and R, can be found according to Eq. (6) in the text.

Assuming that (u,v,w) are the coordinates of a point on
the reflected wavefront and (x,y,z) are the coordinates of
the point on the reflector for which the reflected ray passes
through a given point (¢,v,w) on the wavefront, the radii
of curvature of the reflected wavefront (R,, R.) can be
found from the following equation (Ref. 4):

Rz, (EG —F?) — R, , (EN + GL — 2FM) + (LN — M?) =0
(B-6)

where the reflector surface is assumed to be denoted by
the equation

z=f(xy) (B-7)
and
ou\ ov\?2 ow\?
= | — e —— B-
=) G ) e
_Quou  oviv ww (B-9)
9x 0y Ox oy  Ox Oy
du\* ov\* Jw\?
o-(5) G +G) e
cu o
ox® ox Y
1 R ov ov
— ————— — — B-11
L="c—F | o oy (B-11)
o tw
ox? 0x oy
P du
0x oy ox oy
— | ® (B-12)
M=TFG 7 |mey ox oy
o fw
0x oy ox oy
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T

oy? ox Y
=VEG —F |3 x oy (B-13)

o e w

oy* ox oy

with
u=u(xy), v=0(xy), w=w(x,y)

(B-14)

These relationships between (u, v, w) and (x,y, z) are de-
termined according to the law of reflection (Ref. 2). In
the neighborhood of the point of reflection P, the equation
for the reflector surface is describable by the expression

1 1
— 2 R 2 -
Zo o ax + B) by* — exy (B-15)

with

o= — Ccos® » n sin? o
B R R,
sin® w cos® o
b=- ( R * R, >

_ g 1
Cc = Sinnl o COS w Rg R'r]

where o is the angle between the plane of incidence and
the principal plane of curvature of the reflector at P. (At P,
we have x =y =z = 0, and ¥ = v = w = 0). The surface
of the reflected wave in the neighborhood of P may be
represented by the following equations:

v=y+ Gy (r -1 (B-17)
w =2+ G (x,y){r, — 1) (B-18)
with
x 0z
Gi(xy) = P +2d P (B-19)
Clry) =L 1 2a> (B-20)
T oy

Ge (2, y) = E:__’_;_Cﬂ —2d (B-21)

x 0z 1 oz L

d= —Ea—x—mé};(y—msm@/
bz ' B-22
" (z — 15 cOs i) (B-22)

P 2\ 2 1%
A= [1 + <9§> + (?) } (B-23)
ox oy

The symbol r, denotes the distance between the originat-
ing point of the incident ray and P, the point of reflection
on the surface; and r is the distance between the originat-
ing point and an arbitrary point (x,y,z) on the reflec-
tor, i.e.:

r= [+ y? + 22+ 1f — 2r (ysind + zeosi)]%
(B-24)

The symbol i denotes the angle between the incident ray
and the outward normal at P on the reflector surface.

Carrying out the tedious computation and taking the

u=1x+ G (x,y)(r, — 1) (B-16)  limit as x — 0 and y — 0, one has
ou 0G4 or =
= = — — = 3-2,
P 1+ (ro—1r) = G, ( ax> . 1 (B-25)
8u #°Gs , , 3G [ or o°r B o
il U hwe ox <_ 8x> + Gl( ax2> oo 0 (B-26)
sin i

*u *G, | oGy or oG, or o%r L
axay—(fo 7) 250y + ™ < 6y>+ 3 ( 8x>+cl< 8xay> 2asinicosi
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To




=0 (B-28)

*u 292Gy oG, or o%r L
- _a Rl = B-2
P (ro— 1) P P ( By) + G1< ay2> re 4ccosisini (B-29)
ov 0G. or _
3 = (o= 1) 5+ Gz( ax> von 0 (B-30)

BB B (DB Yral-H), om0
Z—Z 14+ 52 () + cz(- 3—2) oo (B-33)

gyl: - aazczz (ro — 1) + aaG2 (_. %) 4 2( g;z> z’y%: —5bsinicosi + %(3 cos? i sin 1) (B-34)
BeZir-nZra, (- 2—) =0 (B-35)
g2 (- ) e (—5)| malt ooy - (B-36)
:;at; _ a?:az +(ro—1) gjg; n aa(f: <_ %) ra, <_ %) . So(1Hasinti—costi) (B-37)

2 2 2 2,
Sw:8z+(%_r>8G3+zaG3( 8r>+G3( ar)

1
—_—— e — __4 22 2 52 - . s ae Ny
e 3 P P~ b (1 — 4sin?i + cos?i) + . cosi (2 sin?i — cos? )

z,¥—>0 0

(B-39)
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oG,

It can also be shown that as x,y — 0, : 5 9ccosi
ox
or
— =0
ox 9Gs — 2¢sint
0x
or "
a—y—) —sini
oG, m)coszsmz — 9bsini
2 oy To
or 1 )
> ~—>T— (1 ~ ryacosi)
’ Substituting Eqgs. (B-25-B-39) into Egs. (B-8-B-13) gives
2
aT——>ccosi E=1 F=0
0x0y >
02 1 G = cos?i
3 Z —>~T—(cos‘~’i ~ robcosi)
v ° EG — F? = cos*i
G,~>0
L =2acosi— —
G, = —sint o
G, > cosi M= —2ccosi
cos* i
a—cl—>—1—+2a(—cosi) N = 2bcosi — p,
o0x o o
oGy 9. cosi Using Eq. (B-40) and the definition for ¢, b, and ¢ given
oy in Eq. (B-15), one can readily derive Eq. (4) in the text.
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